About Us

Since 2016, Weill Cornell Medicine (New York) and the Gustave Roussy Cancer Campus (Paris) have joined forces to organize an annual conference that provides a forum for education, discussion, and networking among investigators interested in developing safe and effective RT-IT combinations (ImmunoRad).

Contact Info

Email
christine.corinus

Phone
+33 (0) 1 42 11 53 22

  Gustave Roussy Cancer Campus,
Research Department
Pièce 65 - B2M

 

Select your language

Social Media News

[#Monday news]

Tumor growth and vascular redistribution contributes to the dosimetric preferential effect of microbeam radiotherapy: a Monte Carlo study


Ramon Ortiz & José Ramos-Méndez


Tumor growth and vascular redistribution contribute to the preferential vascular effect of microbeam radiotherapy in tumor tissue compared to normal tissue. This conclusion comes from our latest work at University of California, San Francisco focusing on computational modeling of radiobiological responses to Spatially Fractionated Radiotherapy (SFRT). Nature

Read more : Nature


 

Abstract

The radiobiological mechanisms behind the favorable response of tissues to microbeam radiation therapy (MRT) are not fully described yet. Among other factors, the differential action to tumor and normal tissue vasculature is considered to contribute to MRT efficacy. This computational study evaluates the relevance of tumor growth stage and associated vascular redistribution to this effect. A multiscale approach was employed with two simulation softwares: TOPAS and CompuCell3D. Segmentation images of the angioarchitecture of a non-bearing tumor mouse brain were used. The tumor vasculature at different tumor growth stages was obtained by simulating the tumor proliferation and spatial vascular redistribution. The radiation-induced damage to vascular cells and consequent change in oxygen perfusion were simulated for normal and tumor tissues. The multiscale model showed that oxygen perfusion to tissues and vessels decreased as a function of the tumor proliferation stage, and with the decrease in uniformity of the vasculature spatial distribution in the tumor tissue. This led to an increase in the fraction of hypoxic (up to 60%) and necrotic (10%) tumor cells at advanced tumor stages, whereas normal tissues remained normoxic. These results showed that tumor stage and spatial vascular distribution contribute to the preferential effect of MRT in tumors.